Quality-tested pre-column (Retention Gap) for the determination of mineral oil contamination in food, cosmetics and packaging materials # Non-discrimination from C₁₀ to C₅₀ Verena Koospal, food chemist **Application note ASAN 2201** # Quality Tested Retention Gap Application note ASAN 2201 #### Introduction The analysis for the determination of mineral oil contamination in food, cosmetics and packaging materials is carried out with an online LC-GC-FID coupling. In the HPLC, the substance groups mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) are separated. The two fractions are transferred to the GC with 450 μL of solvent each, where they are first transferred to an unoccupied precolumn, a so-called Retention Gap. The majority of the solvent is evaporated via a special interface. Subsequently, the analytes are transferred to the coated GC separation column, separated according to boiling point and detected by means of FID. #### **GC** columns - MOSH/MOAH Retention Gap: AS-GC-4060 - MOSH/MOAH separation column: MXT-1 0.25 μm, 15 m x 0.25 mm IDAS-RE-70120 According to the current state of analytics, MOSH and MOAH are quantified between C_{10} and C_{50} [1]. A necessary freedom from discrimination in the determination range C_{10} to C_{50} is to be ensured by an alkane standard C_{10} - C_{50} (MOSH/MOAH retention time standard, AS-RE-31076). In the past, even new Retention Gaps have repeatedly failed to ensure freedom from discrimination for C_{50} . Therefore, Axel Semrau exclusively offers a Retention Gap tested for freedom from discrimination. # Ensure freedom from discrimination To ensure freedom from discrimination in the determination range C_{10} - C_{50} , the following peak area ratios are formed: - C₅₀ to C₂₀ for high molecular weight boiling range - C₁₀ to C₂₀ for the low molecular boiling range The ratio of C_{50} to C_{20} should be between 0.8 and 1.2 [1]. Freedom from discrimination in the front boiling range from C_{10} should also be ensured by a peak area ratio of C_{10} to C_{20} between 0.8 and 1.2. Ensuring this freedom from discrimination can be a challenge for users, as the causes can be of different origins. #### Causes of discrimination from C₁₀, e.g., - Pressure settings on the GC not adjusted (too much evaporation) - Shifted fraction window in HPLC - Leakage in the system #### Causes of discrimination from C₅₀, e.g., - (Dirty) Retention Gap - Dirty FID nozzles - Dirty GC separation columns - Incorrect installation of the GC columns In the past, the causes of discrimination of C_{50} occurred even when a new retention gap was properly installed. The recoveries of C_{50} were then sometimes far below 80 %. Figure 1 shows an example of the retention time standard used to ensure freedom from discrimination. The measurement shows a strong discrimination of the alkanes from C_{35} . The recovery of C_{50} is only 10 % relative to C_{20} . In this case, a new Retention Gap was the cause of the discrimination. The retention gap tested by Axel Semrau shows recoveries of C_{50} of at least 80 % and thus fulfils the requirements for non-discrimination of C_{50} according to [1] of 80-120 %. Figure 2 shows the standard on the front GC channel (MOSH). To ensure freedom from discrimination for both GC channels, the standard is also measured in *reverse* on the rear channel (MOAH) (Figure 3). The Retention Gap tested by Axel Semrau was used for the determination. All alkanes show comparable peak heights and areas. # Quality Tested Retention Gap Application note ASAN 2201 **Figure 1:** MOSH LC-GC-FID chromatogram of the injection of a retention time standard with the components C_{10} , C_{11} , C_{13} , C_{16} , C_{20} , C_{24} , C_{25} , C_{35} , C_{40} and C_{50} on the front GC channel. The alkanes C_{24} and C_{25} already show strong tailing. The alkanes C_{35} , C_{40} and C_{50} are visibly discriminated. **Figure 2:** MOSH LC-GC-FID chromatogram of the injection of a retention time standard with the components C_{10} , C_{11} , C_{13} , C_{16} , C_{20} , C_{24} , C_{25} , C_{35} , C_{40} and C_{50} on the front GC channel. All alkanes show comparable peak heights and areas. **Figure 3:** MOSH LC-GC-FID chromatogram of the injection of a retention time standard with the components C_{10} , C_{11} , C_{13} , C_{16} , C_{20} , C_{24} , C_{25} , C_{35} , C_{40} and C_{50} on the rear GC channel. All alkanes show comparable peak heights and areas. Table 1 shows the peak areas and peak area ratios to the measurements of the standard from Figure 2 (MOSH channel) and Figure 3 (MOAH channel). The peak area ratios are in the range of 0.95-1.01 and thus fulfil the requirements for freedom from discrimination according to [1] very well . # Quality Tested Retention Gap Application note ASAN 2201 **Table 1:** Determination of the peak area ratios C_{10} to C_{20} and C_{50} to C_{20} in the retention time standard to the measurements in Figure 2 and 3. The requirements for freedom from discrimination according to [1] are fulfilled. | GC channel | Peak areas | | | Peak
Area ratio | | |------------|-----------------|-----------------|-----------------|--|--| | | C ₁₀ | C ₂₀ | C ₅₀ | C ₁₀
to
C ₂₀ | C ₅₀
to
C ₂₀ | | MOSH | 655,685 | 653,94 | 623,674 | 1,00 | 0,95 | | MOAH | 672,541 | 667,133 | 645,298 | 1,01 | 0,97 | ### **Summary** The internal quality control of the Retention Gap, which is exclusively available from Axel Semrau, ensures that the requirements for non-discrimination of C₅₀ and C₁₀ are met. Discrimination caused by a new Retention Gap can be excluded by the internal comprehensive quality check. The quality-tested Retention Gap has already proven itself in routine use by a large number of users. However, if problems with discrimination should occur again when a new Retention Gap is installed, it can be exchanged without incurring any costs. #### Literature [1] Bratinova, S. and Hoekstra, E., Guidance on sampling, analysis and data reporting for the monitoring of mineral oil hydrocarbons in food and food contact materials, EUR 29666 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-00172-0, doi:10.2760/208879, JRC115694. The quality check of the Retention Gap is a development by Axel Semrau. #### Subject to technical changes Axel Semrau GmbH & Co. KG Part of the Trajan Family Stefansbecke 42 45549 Sprockhövel Tel.: +49 2339 / 12090 www.axelsemrau.de